Week 8: Bayesian Optimization AIM-5014-1A: Experimental Optimization

David Sweet // 20230720

Review: LLN, CLT, A/B Testing

- As $N \to \infty$, $\bar{y} \to E[BM]$ (LLN)
 - CLT: $\bar{y} \sim \mathcal{N}(E[BM], \sigma^2)$, "measured BM is gaussian"

• **Design**:
$$N \ge \left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^2$$

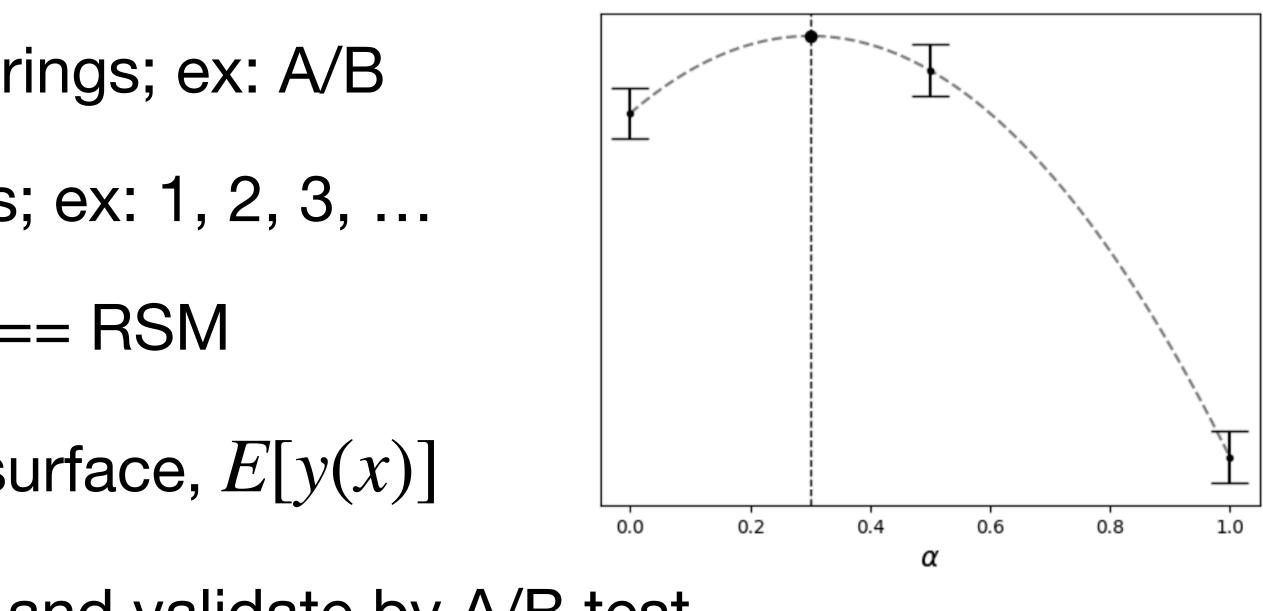
- Measure: Randomize, $\bar{\delta} = \bar{y}_B \bar{y}_A$, se
- . Analyze: Accept B if $\bar{\delta} > PS$ and $-\!\!\!\!-\!\!\!\!- \geq 1.64$ (check guardrails) Se
- False Positive Traps: Early stopping, multiple comparisons (use Bonferroni)

$$= \sigma_{\delta} / \sqrt{N}$$

Review: Response Surface Methodology

- Parameters:
 - categorial: discrete unordered, strings; ex: A/B
 - ordinal: discrete ordered, integers; ex: 1, 2, 3, ...
 - continuous: double; ex., [0,1] <== RSM
- Surrogate, y(x), models response surface, E[y(x)]• Find optimum, $x^* = \arg \max y(x)$, and validate by A/B test

X

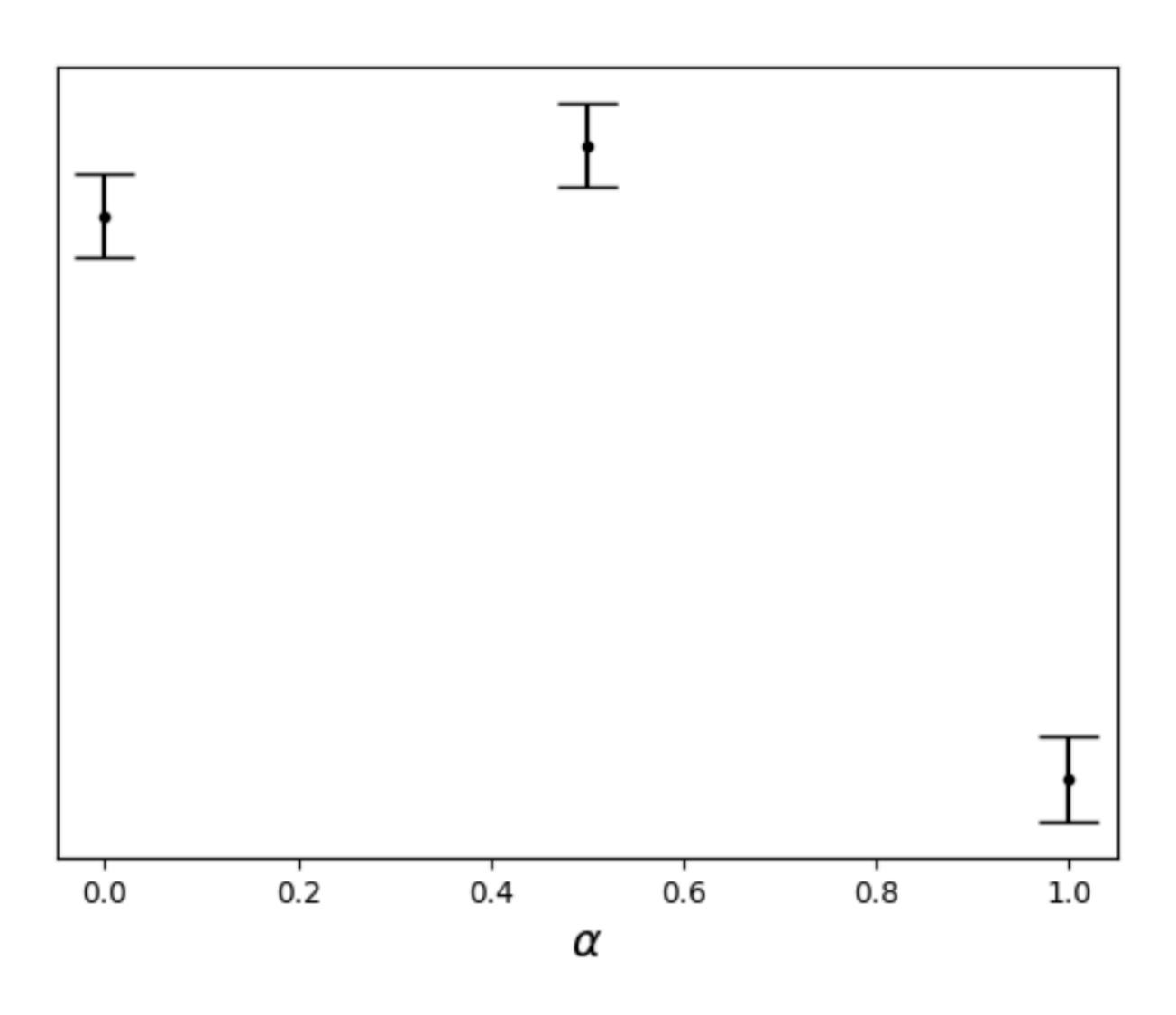


Case: Song recommender (again)

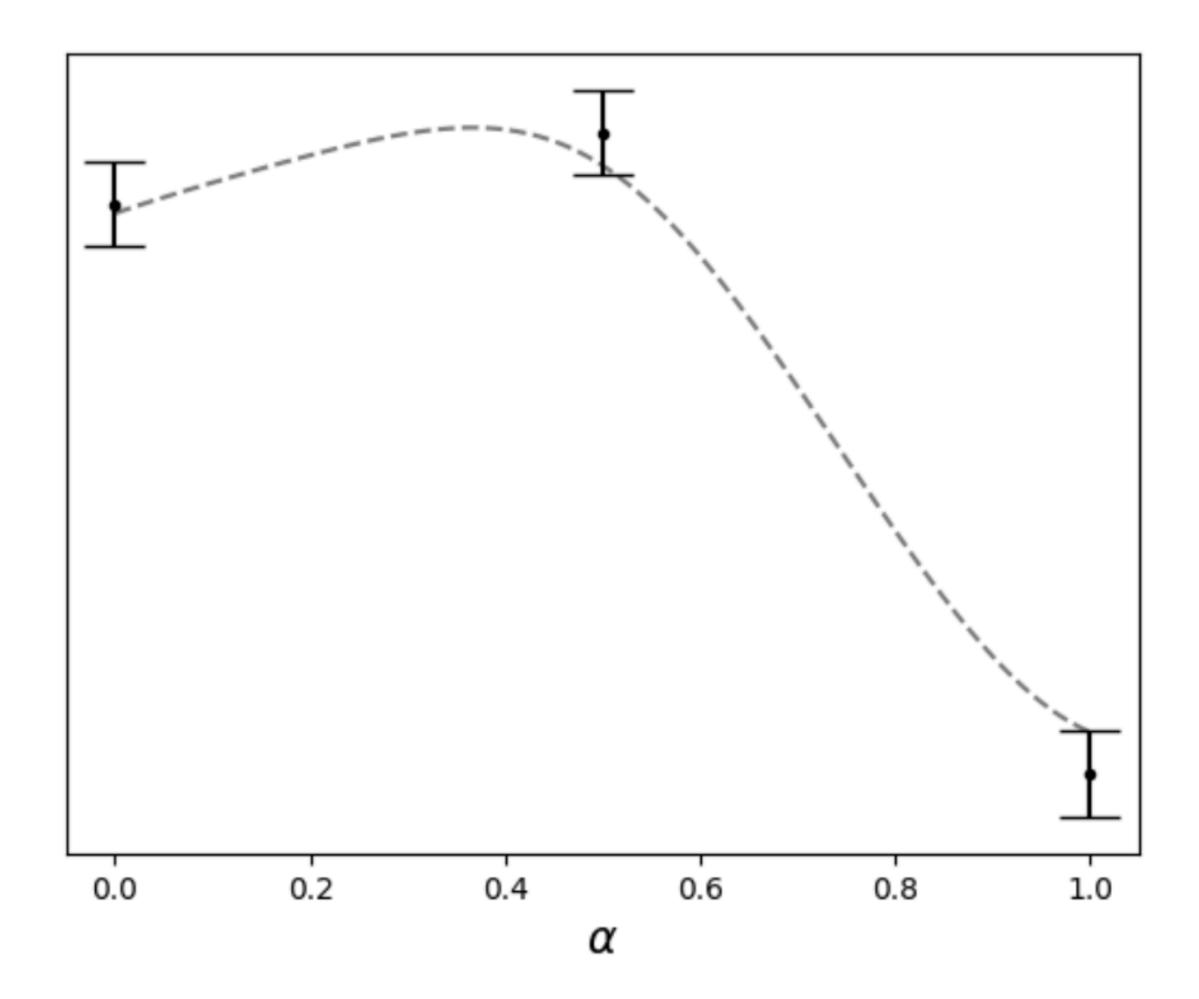
- In prod (A): Ranking songs by $p_{\text{listen}} = P\{\text{user will listen until the end}\}$
- In dev (B): Ranking songs by $p_{like} = P\{user will click song's like button\}$
- Rank by: *score* = $\alpha p_{\text{listen}} + (1 \alpha) p_{\text{like}}$
- Today: Try Bayesian Optimization instead of RSM

BO: Initialization

- Start with same initial design
- Measure BM at
 - $\alpha \in \{0.0, 0.5, 0.1\}$

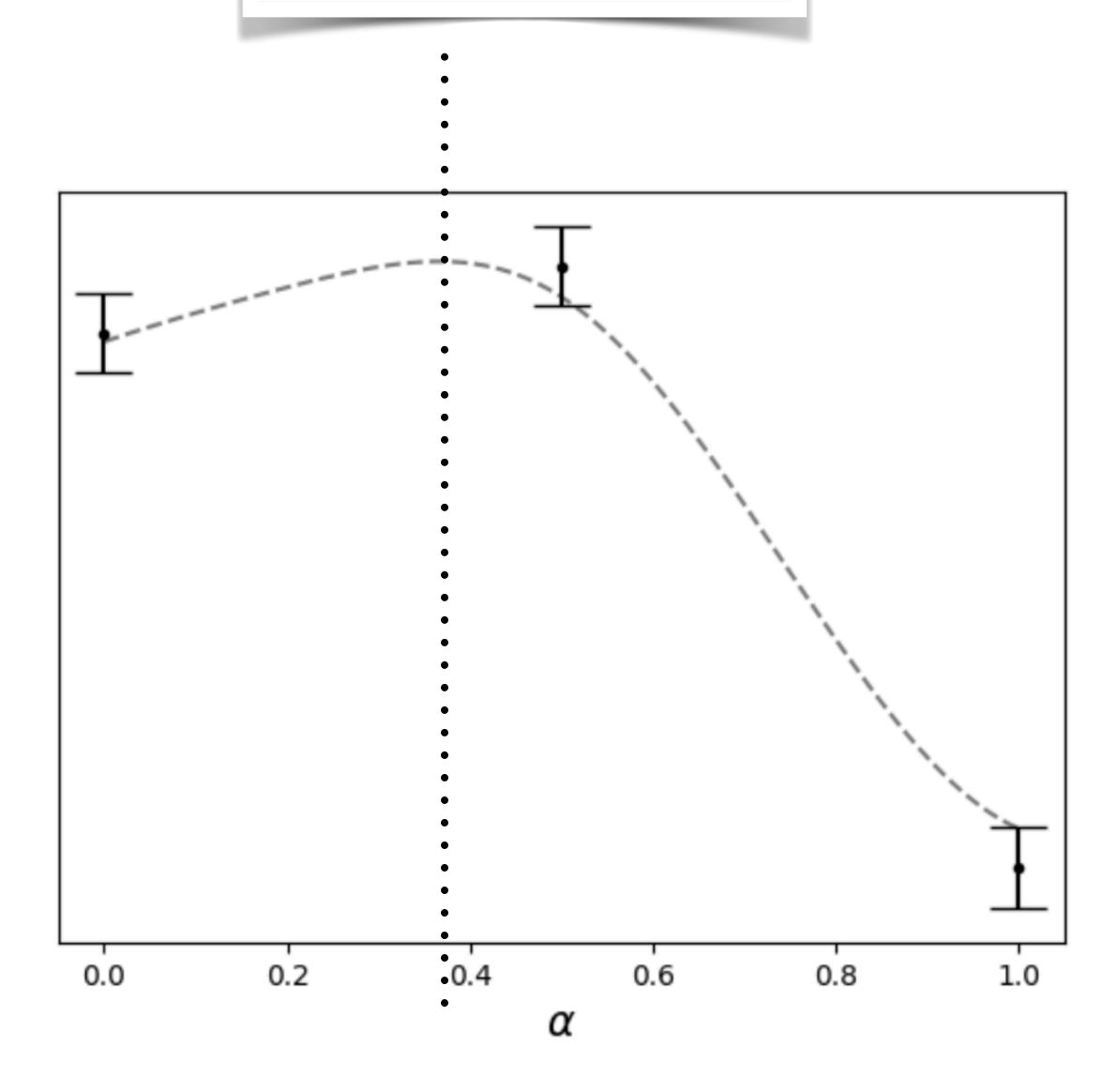


- BO surrogate
- GPR: Gaussian Process Regression
 - Not quite a parabola, but fits
- Model of response surface, $BM(\alpha)$



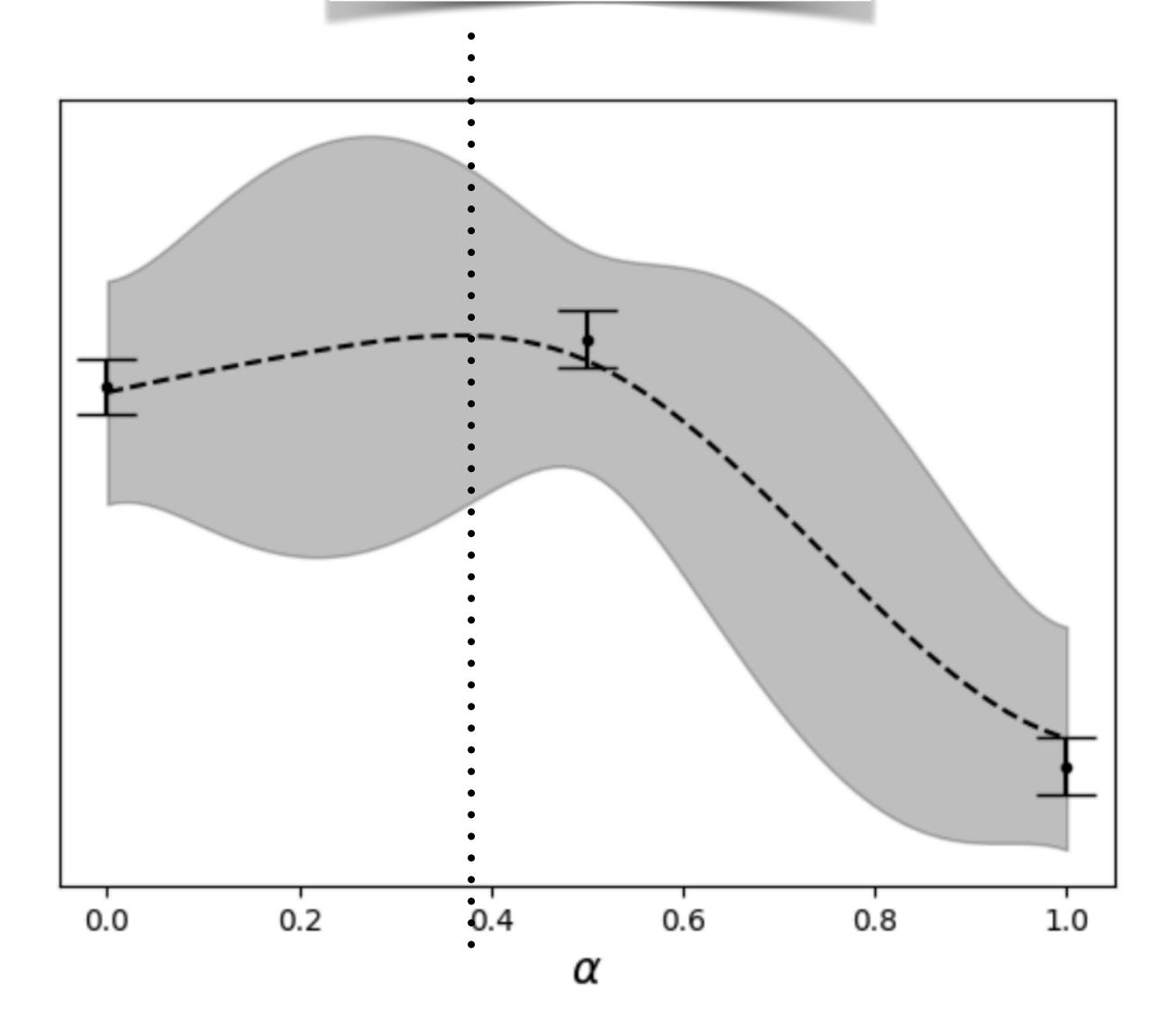
- Find α that maximizes dashed curve (mean estimate)
- What is true shape of response surface?
 - Could be anything
 - Uncertain about shape

Maximizes mean estimate

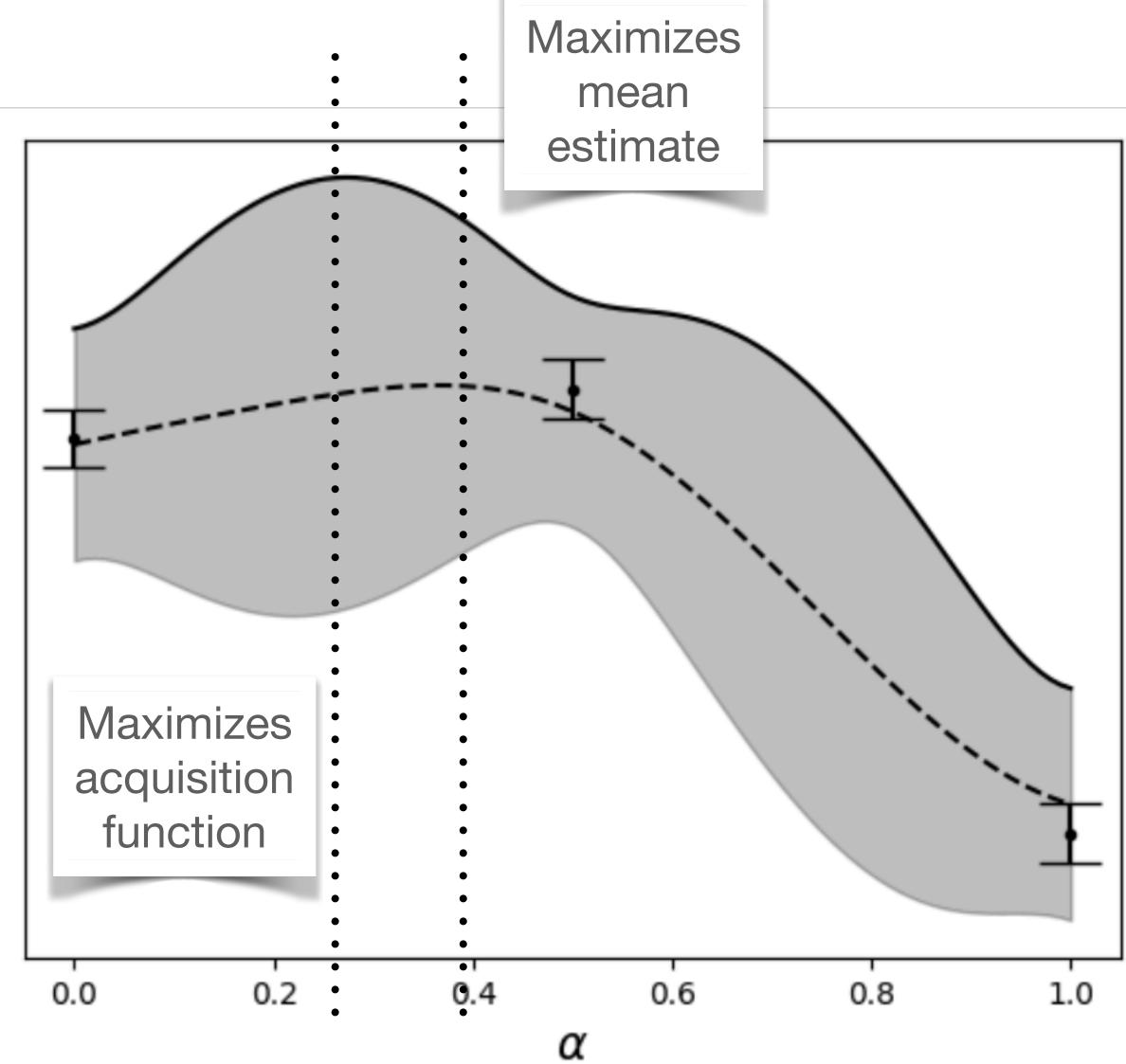


- GPR also models uncertainty
- Left of dashed line is very uncertain
- Could fix that by measuring there

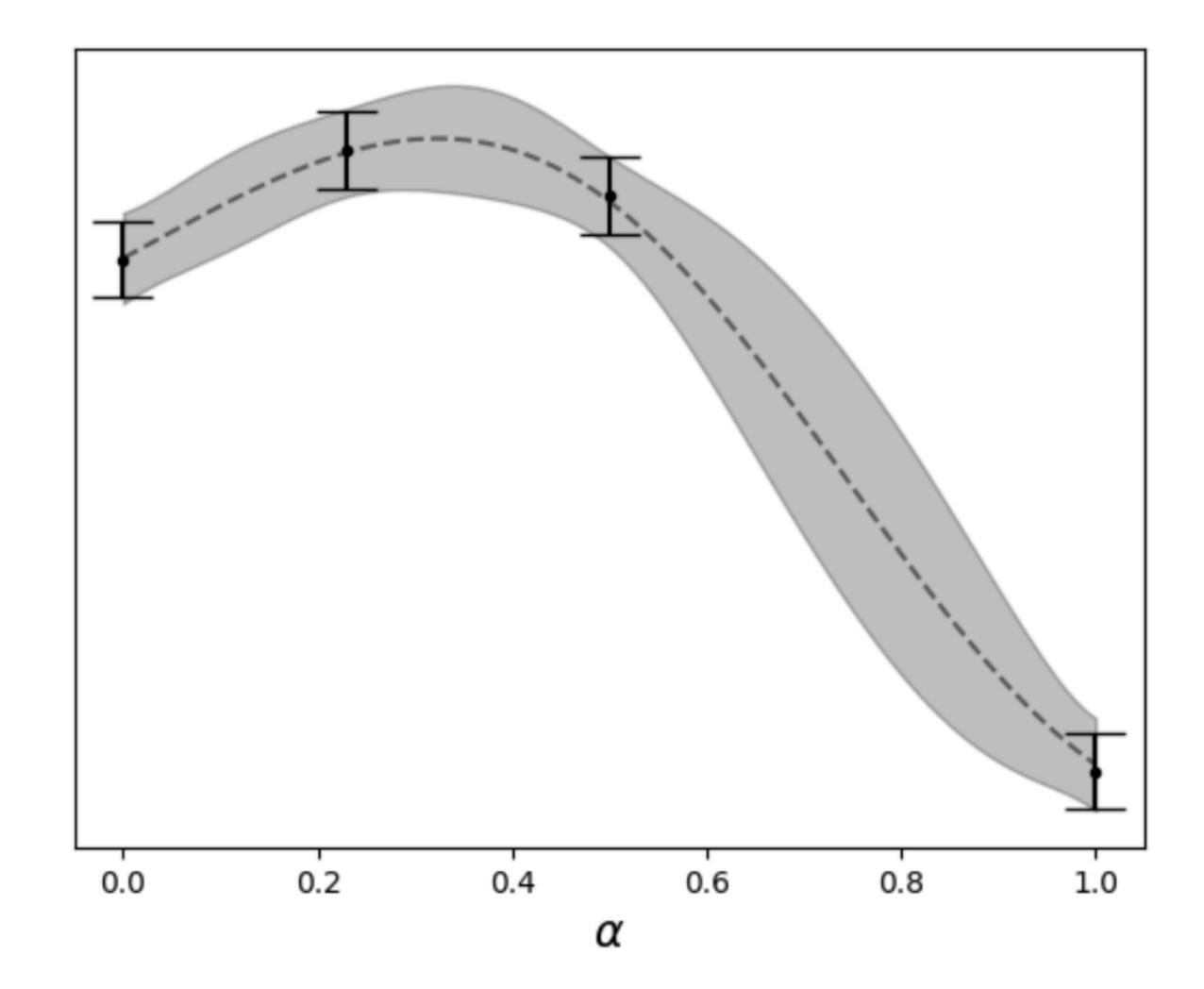
Maximizes mean estimate



- BO maximizes top of gray area
 - dark line is acquisition function
- High mean *and* high uncertainty



- More certainty about shape of response surface now
- More likely that surrogate optimum matches response surface optimum

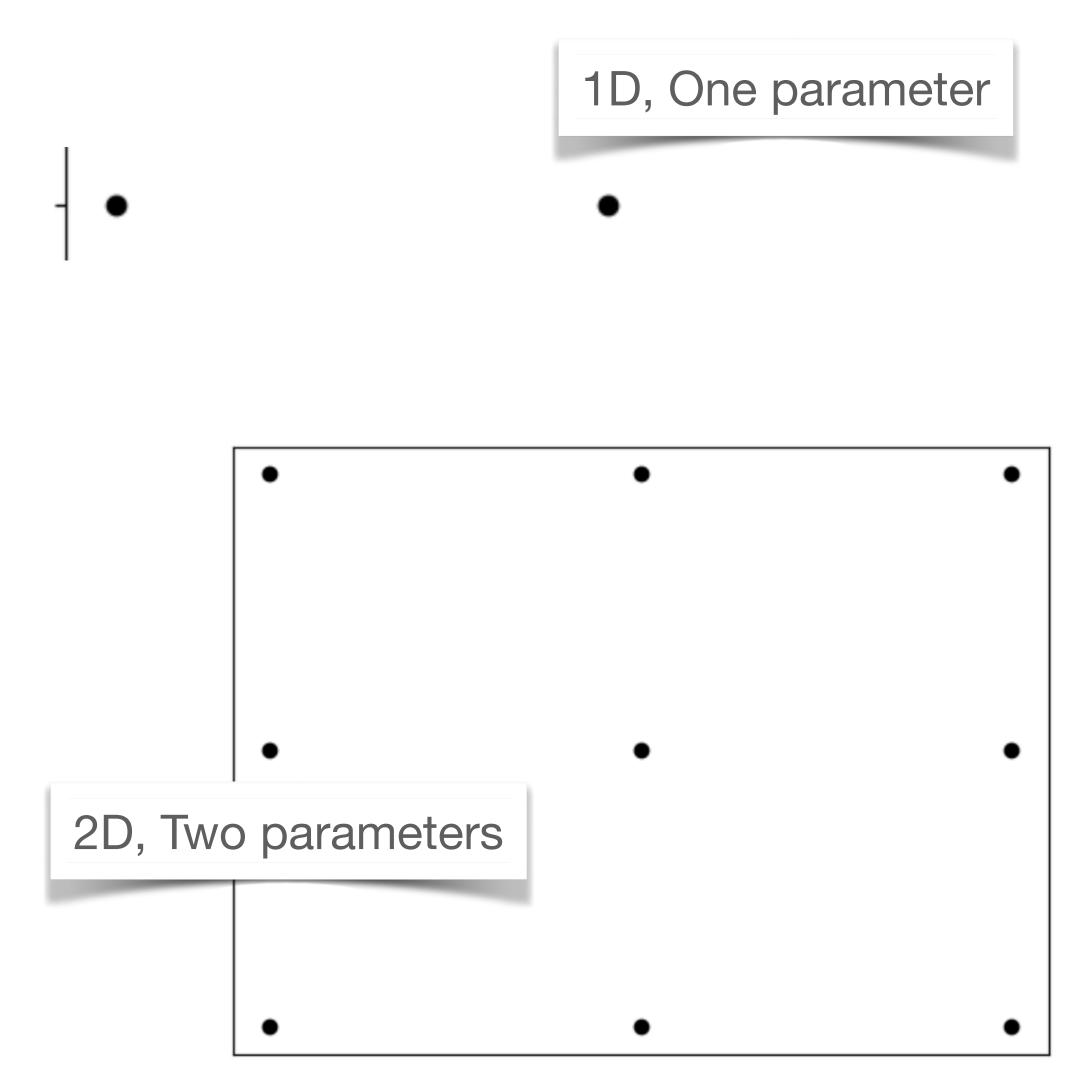


Bayesian Optimization Overview

- **Initialization:** Spread measurements out in parameter space
- Surrogate: Gaussian Process Regression (GPR)
 - Models mean and se
- **Design:** Optimize acquisition function
 - Determines next parameter value(s) to measure •

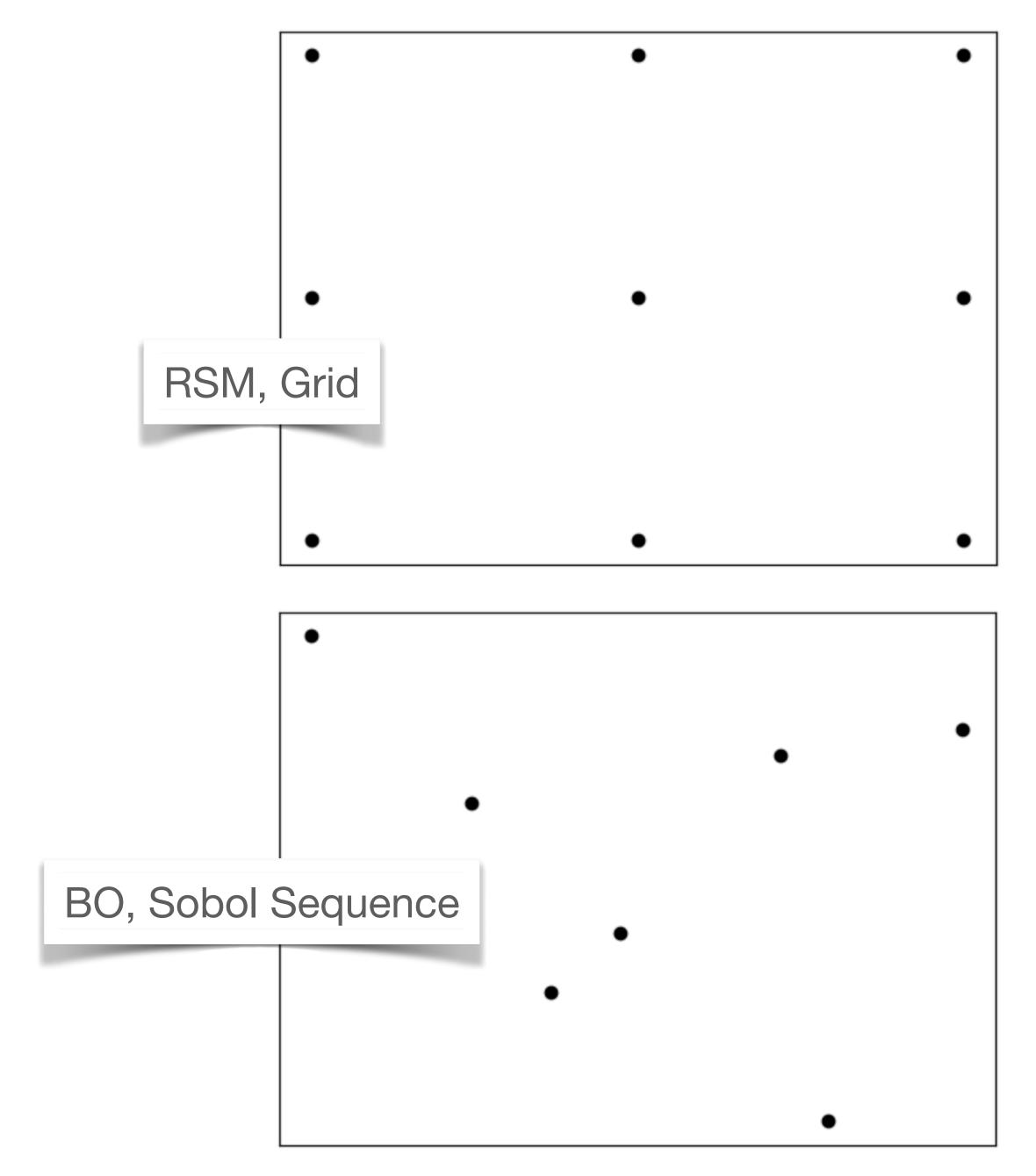
BO: Initialization

- Spread points out in parameter space
 - 1D: 3 points
 - 2D: $3 \times 3 = 3^2 = 9$ points
 - 3D: $3 \times 3 \times 3 = 3^3 = 27$ points
 - ... dD: 3^d = too many points
- Curse of dimensionality

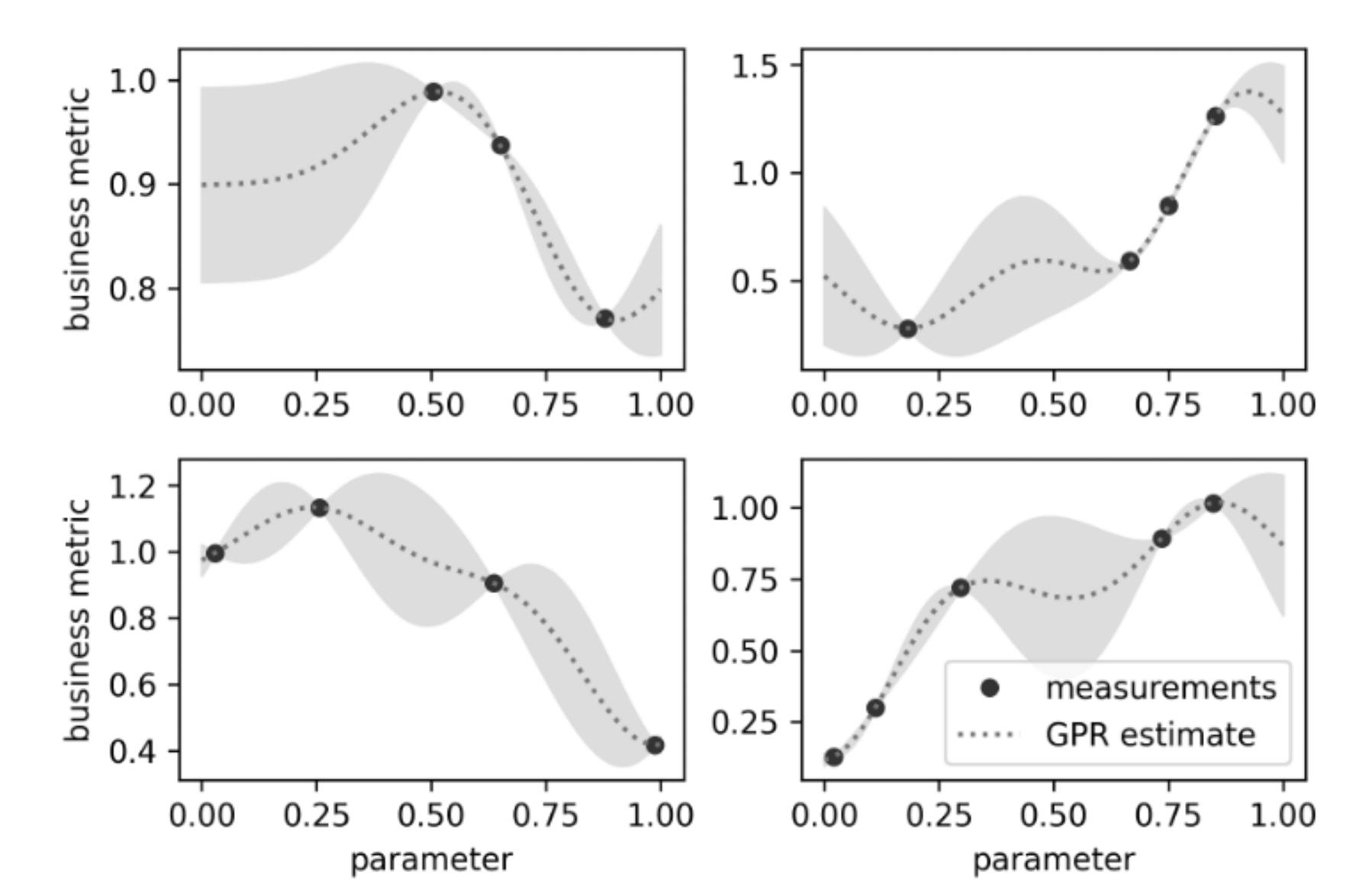


BO: Initialization

- *K* arms; $K = 3^d$
- Exponential in (curse of) d
- Solution: Space-filling sequence
 - K independent of d
- Choose K based on capacity to experiment

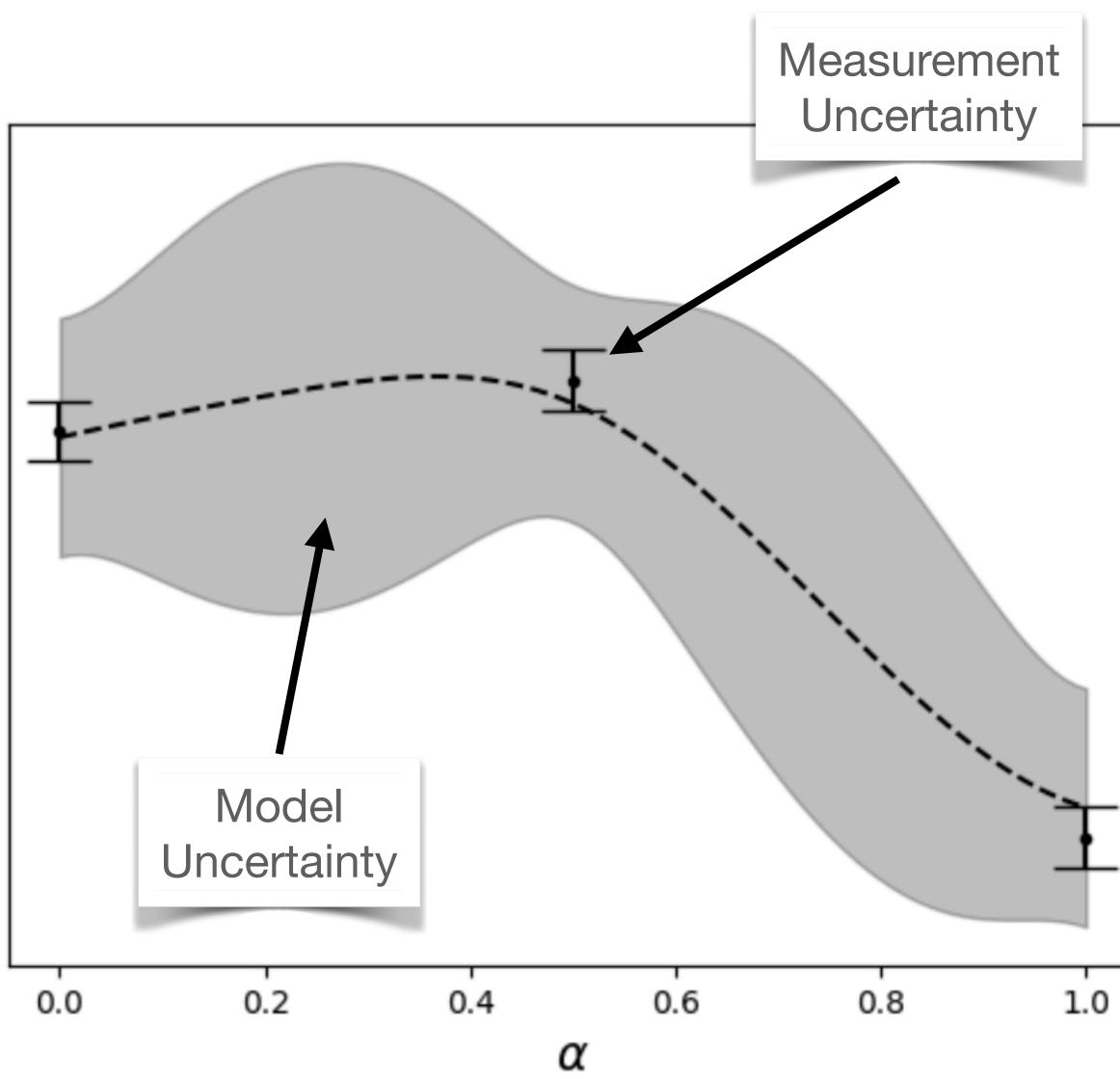


- Recall, RSM uses linear model
 - $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$
 - Engineer decides regressors
- Gaussian Process Regression (GPR)
 - Estimates are weighted averages of all measurements
 - "Fancy KNN": Nearer neighbors are given more weight
 - No fitting, no betas; GPR is non-parametric



- Two types of uncertainty
 - Aleatoric: *measurement uncertainty*
 - Epistemic: *model uncertainty*
- Measurement uncertainty: Familiar *se*; Noise in your system
- Model uncertainty: Parameters where we haven't measured yet

- Measurement uncertainty
 - Error bars
 - Decrease by increasing ${\cal N}$
- Model uncertainty
 - Gray areas
 - Decrease by measuring a new parameter value



BO: GPR Equations

$$w(x, x_i) = e^{-(x-x_i)^2/(2s^2)}$$
, (K

- x, y are vectors of measured parameters and BMs
- s is a hyperparameter, tuned to the measurements
- \hat{x} is a query value, \hat{y} , $\hat{\sigma}_{v}$ are estimates

 $(K_{x})_{i} = w(x, x_{i}), (K_{xx})_{ii} = w(x_{i}, x_{i})$

 $\hat{y}(\hat{x}) = K_{r}^{T} K_{rr}^{-1} y$

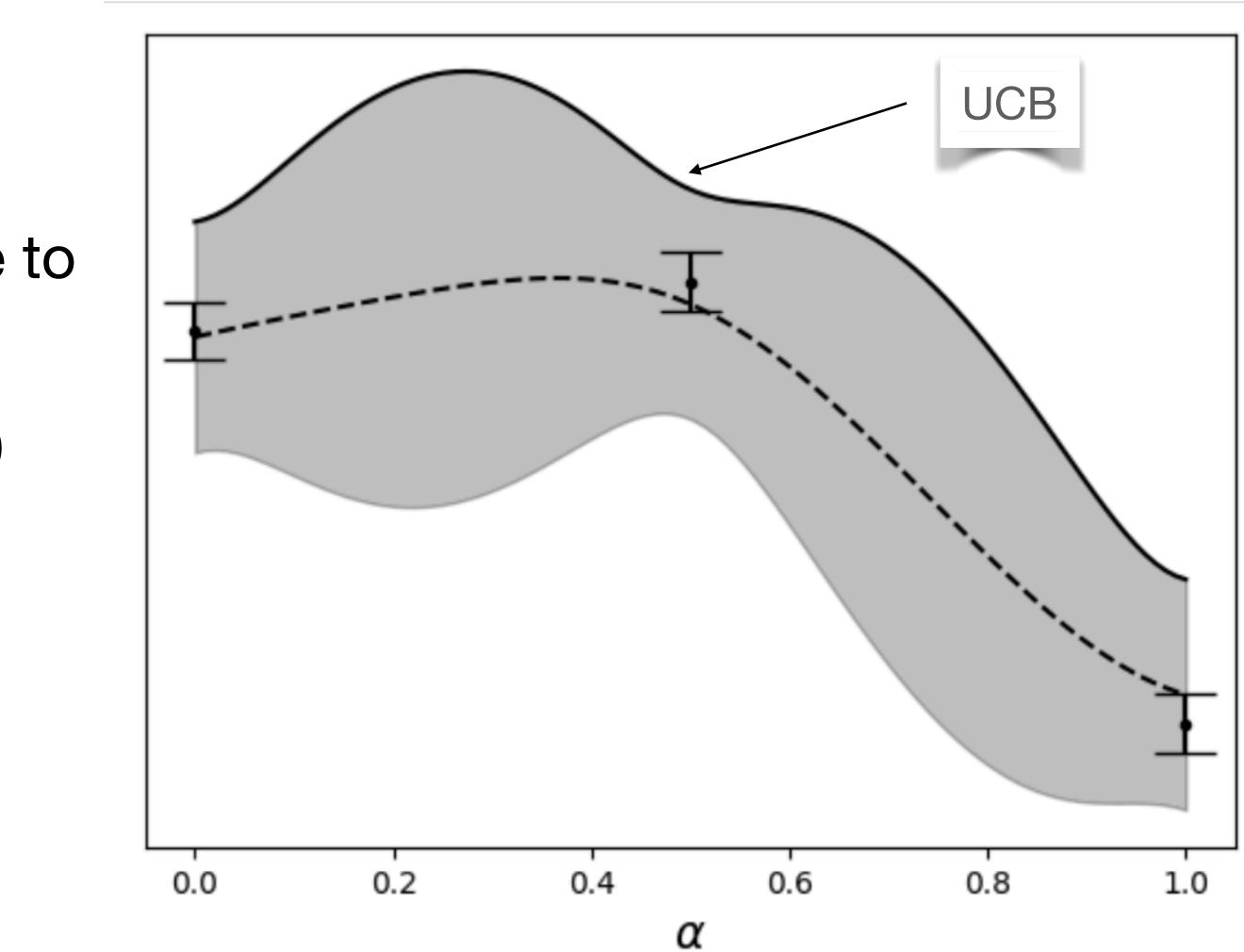
 $\hat{\sigma}_{v}^{2} = 1 - K_{x}^{T} K_{xx}^{-1} K_{xx}$

See Appendix C of Experimentation for Engineers

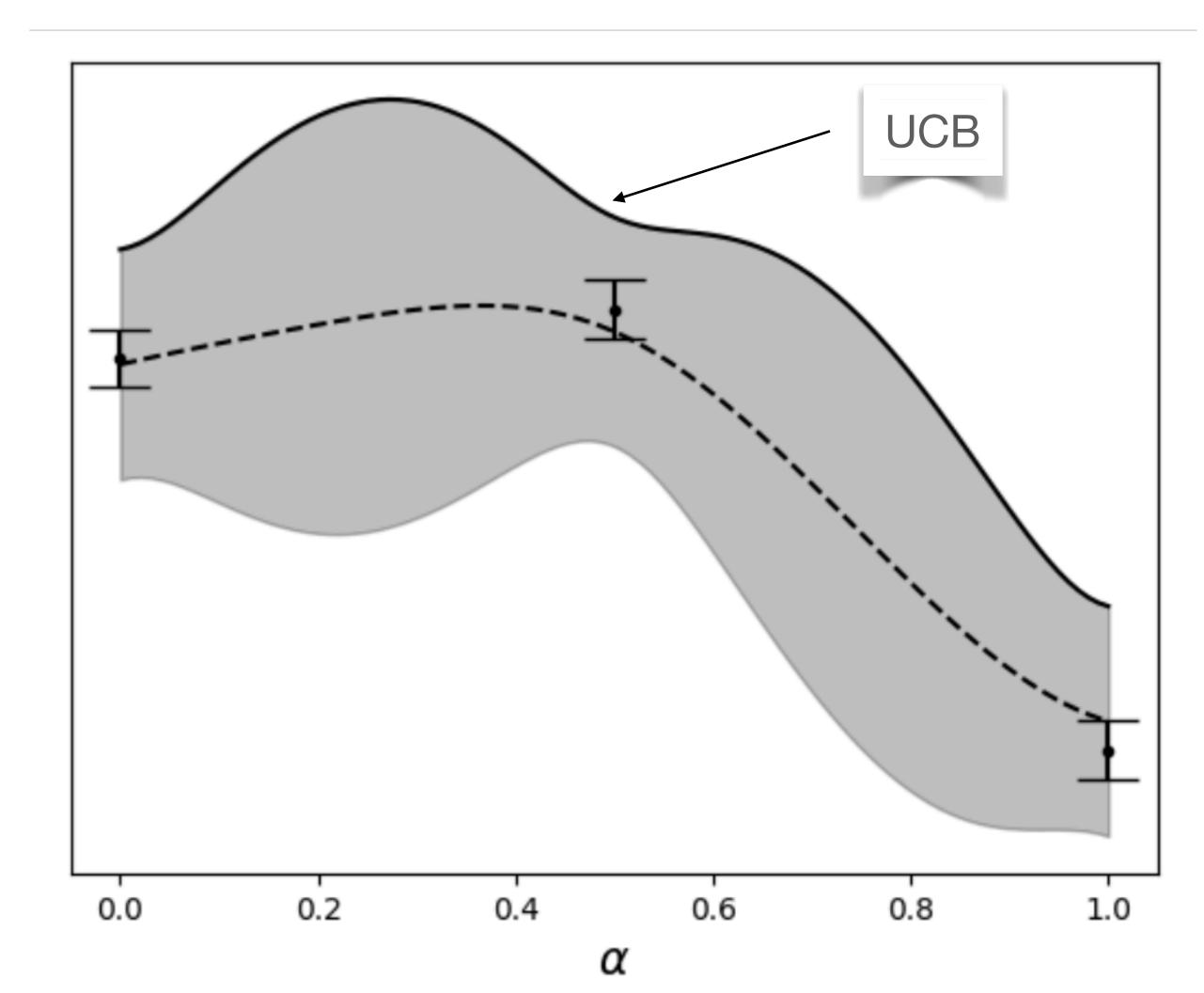
What puts the G in GPR? And how is it a "process"?

- Model each value y(x) as a gaussian distribution
- Model any collection of $\{y(x)\}$ as a multivariate gaussian distribution
 - x is continuous, so really an infinite-dimension gaussian distribution
- First considered as *y*(*t*), where *t* is time. A process is something that changes over time. A gaussian process is one where y has a gaussian distribution that changes over time. Ex: a Brownian motion (continuous random walk)
- Change t to x and you have a machine learning tool, GP regression

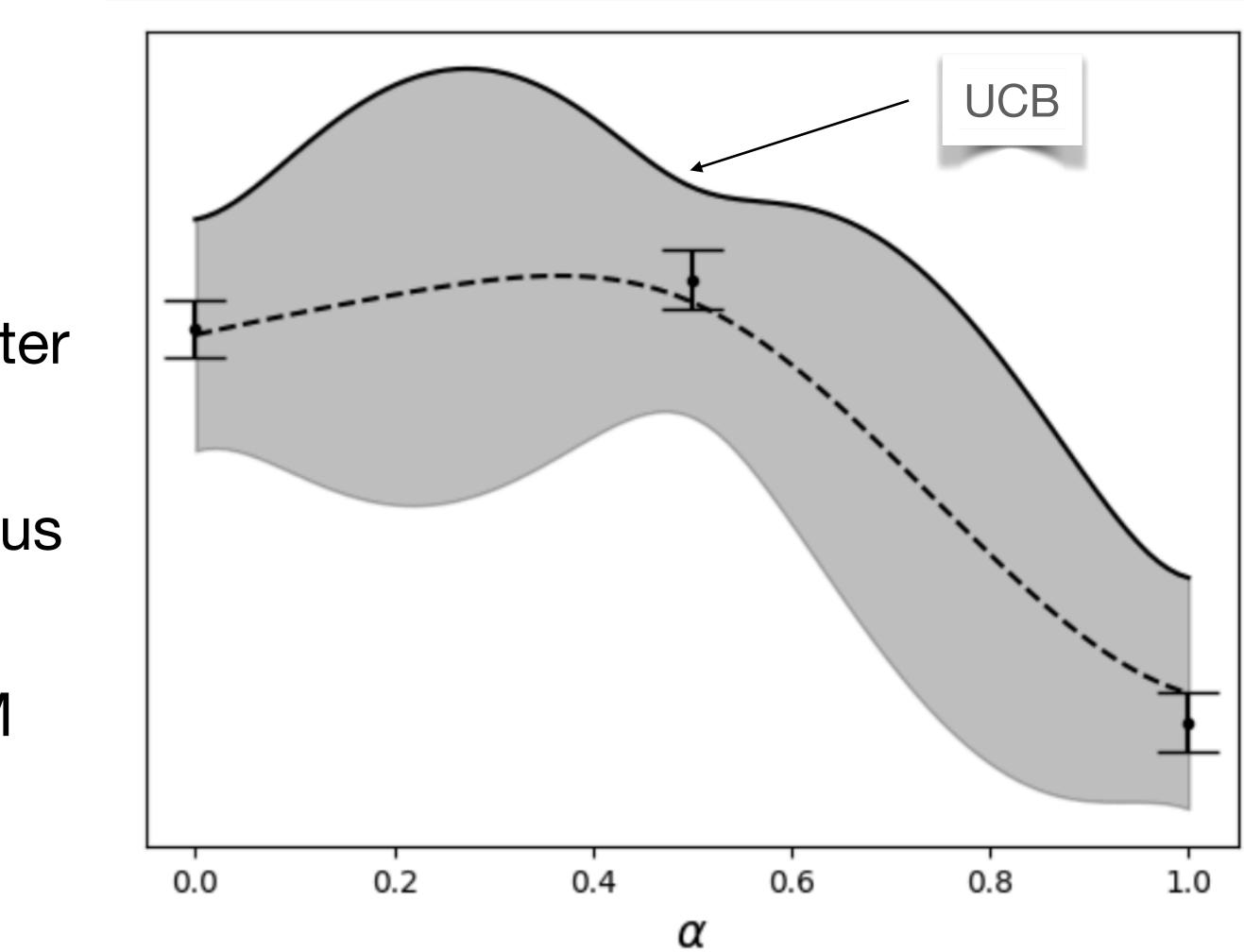
- Acquisition function determines experiment design
 - Determines next parameter value to measure
- Ex: Upper confidence bound (UCB)
 - $af_{ucb} = \mu + \sigma$
 - Dark line



- $af_{ucb} = \mu + \sigma$
- Seeks higher μ , i.e., more BM
 - Measuring here exploits current measurements
 - Yields more \$/clicks/etc. in next measurement
- Also, ...



- $af_{ucb} = \mu + \sigma$
- Seeks higher σ , more uncertainty
 - Measuring here explores parameter space
 - Improves the *next* surrogate, thus *next* design
- Trading some BM now for more BM later



- Many other acquisition functions
 - Expected Improvement (EI, qNEI)
 - Probability of Improvement (PI)
 - Thompson Sampling
 - Entropy Search (ES, PES, MES, GIBBON)
 - TuRBO, EBO, ...
- No "best answer", although qNEI is a good default

- Optimize A.F. w/numerical optimizer
 - BFGS, req. gradient
 - scipy.optimize.minimize
 - from botorch.optim import optimize acqf
 - CMA-ES, no gradient
 - Black Box Optimizer (BBO)
 - pip install pycma

Bayesian optimization is also a BBO

BO: Connections

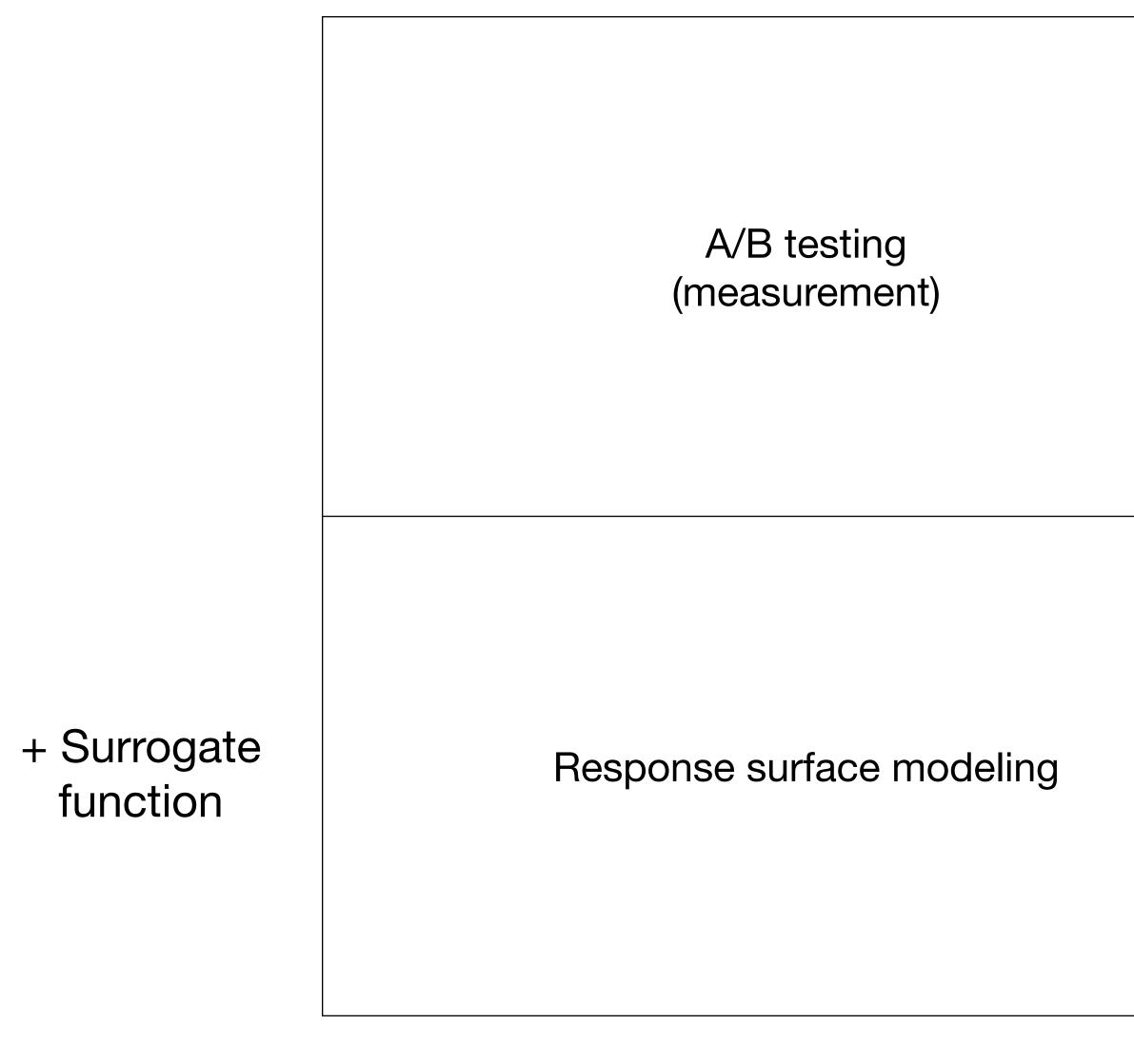
- BO builds on
 - A/B testing: Take a low-se, low-bias measurement
 - MAB: Balance exploration (μ) & exploitation (σ) in design
 - RSM: Build a surrogate and optimize over it

BO: Connections

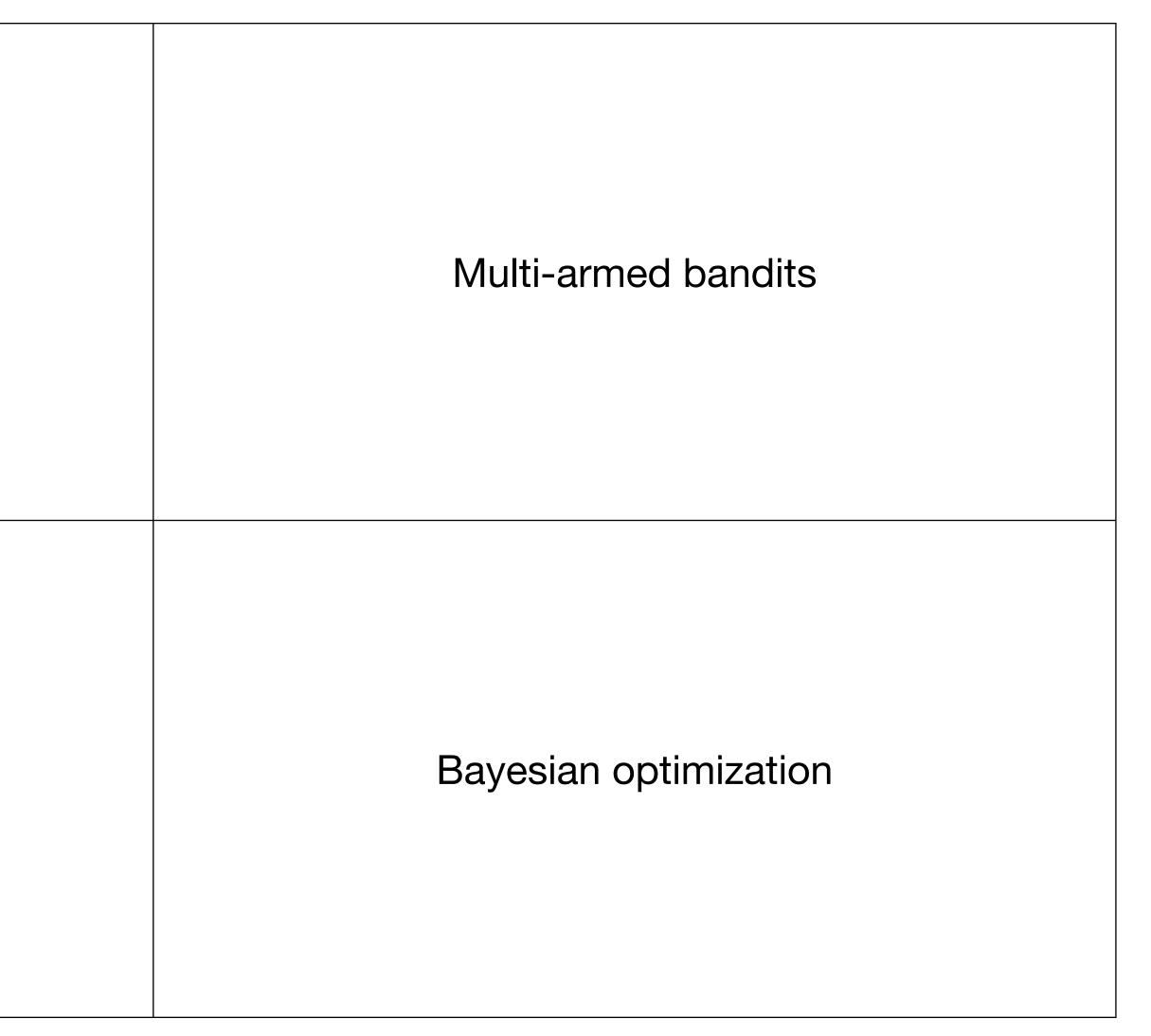
- Advances technique
- GPR instead of linear regression for surrogate
 - More flexible, more automated
- Acquisition function over continuous parameters
 - categorical parameters

MAB's Thompson Sampling, eps-greedy are acquisition functions over

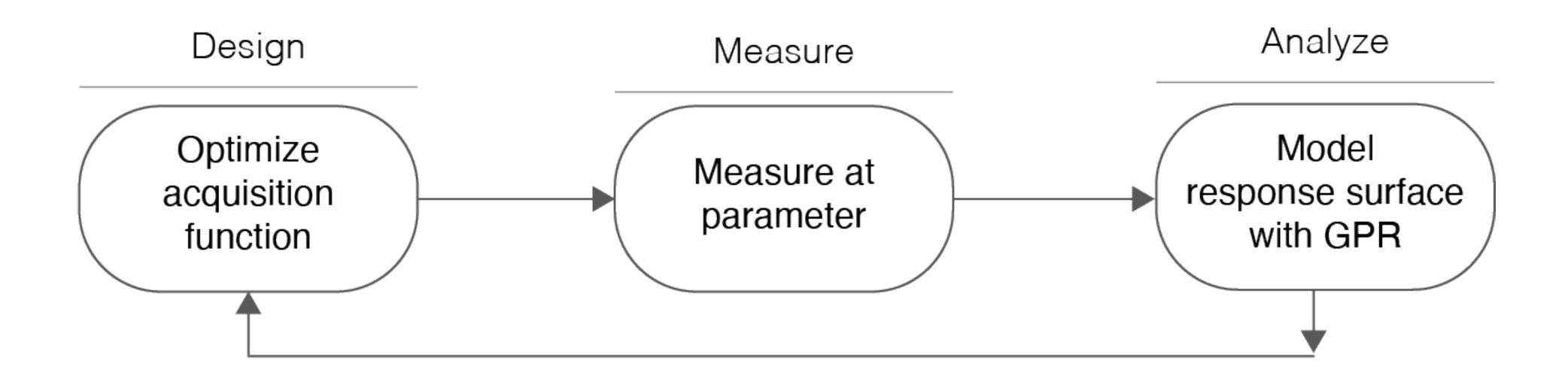
BO: Connections



+ Exploration/exploitation



BO Iteration

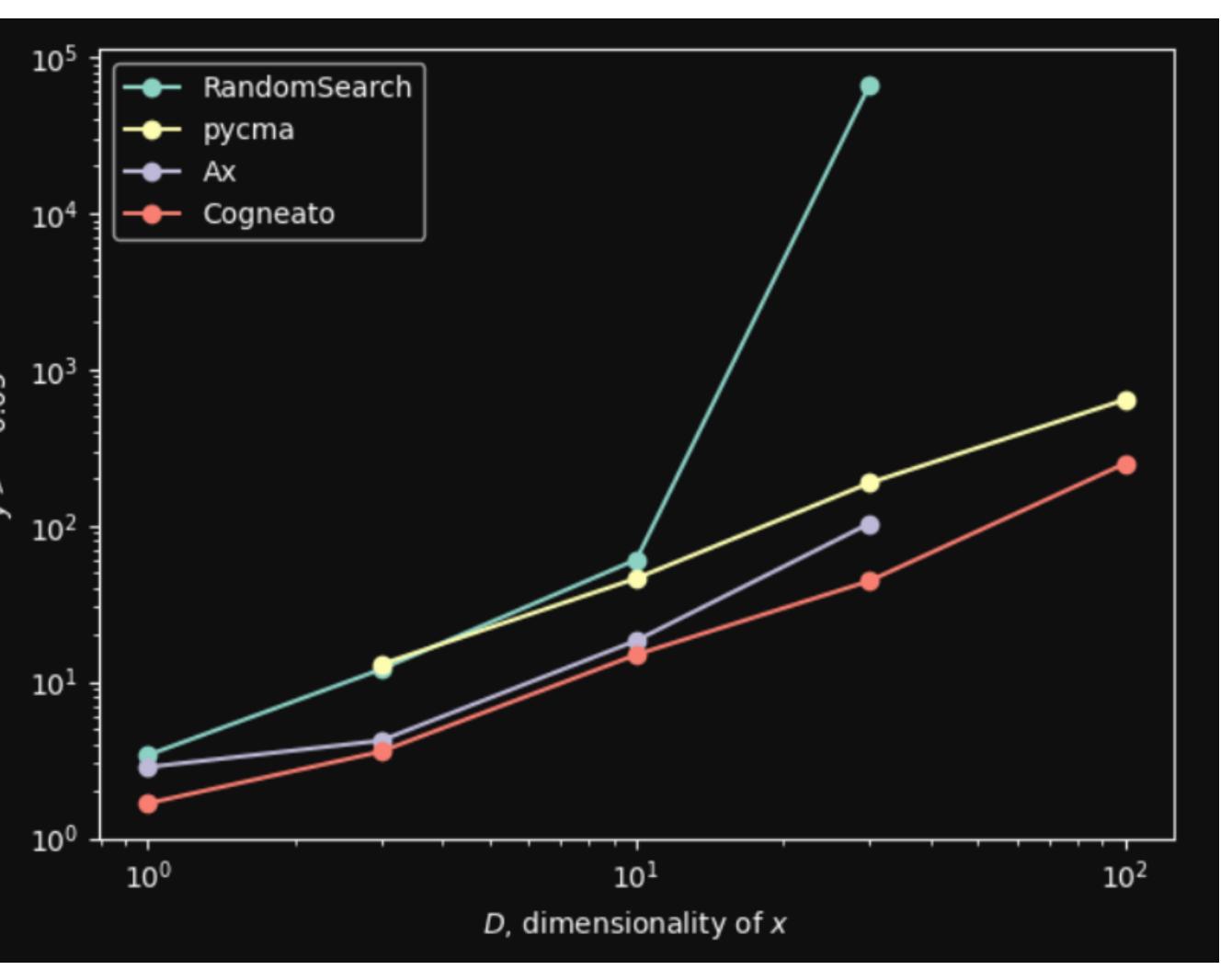


BO: Flexible & Feature-Rich

- Mixed variable types: Continuous, ordinal (integer), and categorical (boolean)
- Multiple metrics: PnL, risk, volume, order rate, ... simultaneously
- Multiple fidelities: Combine simulator results w/live results
- **Constraints**: Limit risk, capital, market participation
- Arbitrary measurements: Build surrogate from all available measurements
- Research is ongoing into higher dimensions, better initialization, better acquisition functions, surrogates for more complex systems

Cogneato.xyz

- GPyTorch, BoTorch, Ax
- Simplified interface, custom algorithm code
- Scales:100D+
- Mixed categorical, ordinal, and continuous parameters
- Multi-arm (batch) designs



Cogneato <u>cogneato.xyz</u>

intensity:[0,1]	num_objects:{03}	scale:[1,3]	version:old,new	color:red,green,blue	position:{15}	views:mean	views:se
1	0	1.15	old	red	2	100	30
0.5	3	2.2	old	blue	1	110	35
0.22	1	2.5	new	blue	5	60	22
	1 0.5	1 0 0.5 3	1 0 1.15 0.5 3 2.2	1 0 1.15 old 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1.15 old red 0.5 3 2.2 old blue	1 0 1.15 old red 2 0.5 3 2.2 old blue 1	1 0 1.15 old red 2 100 0.5 3 2.2 old blue 1 110

- Create a table for your measurements in a spreadsheet
- Copy & paste table to Cogneato
- Cogneato returns next experiment design
- Go measure, come back when you're done (hours/days later)

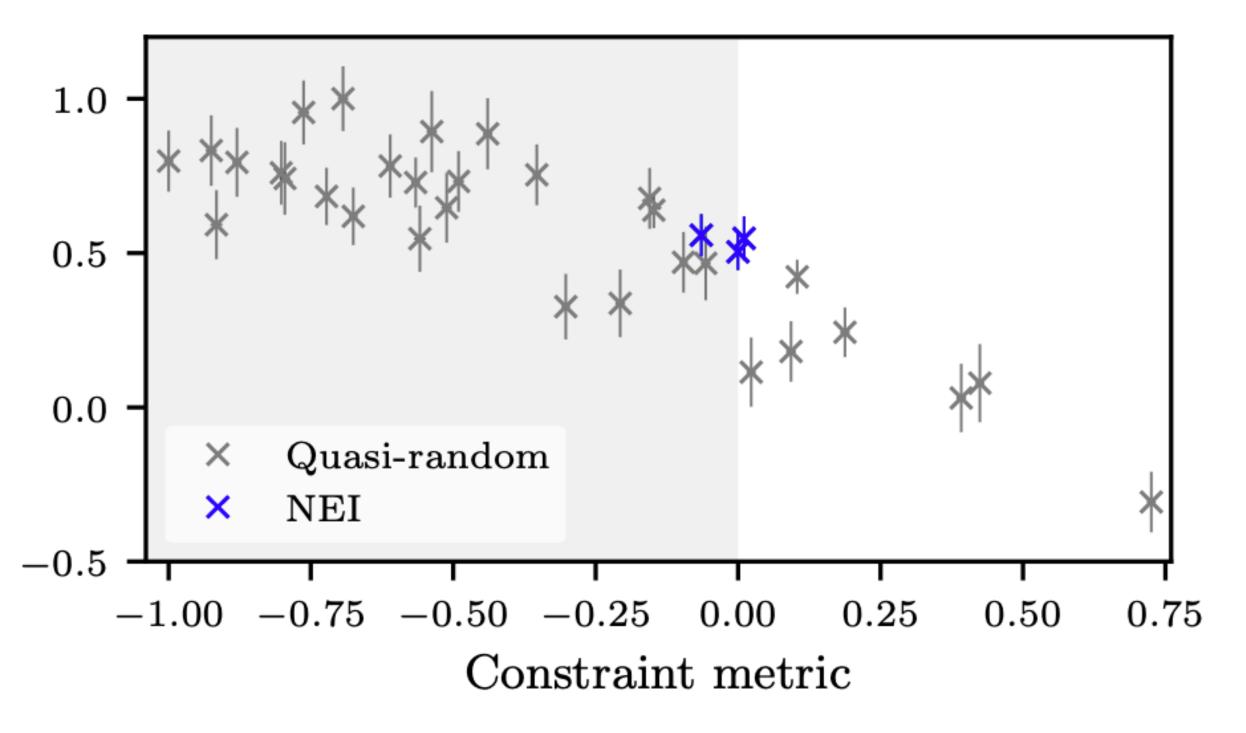
Expected Improvement (qNEI) http://andamooka.org/~dsweet/EOCourse/EI.mov

DoE-Inspired Acquisition Function J. Ren & D Sweet http://andamooka.org/~dsweet/EOCourse/ITS.mov

Case: Ranking System

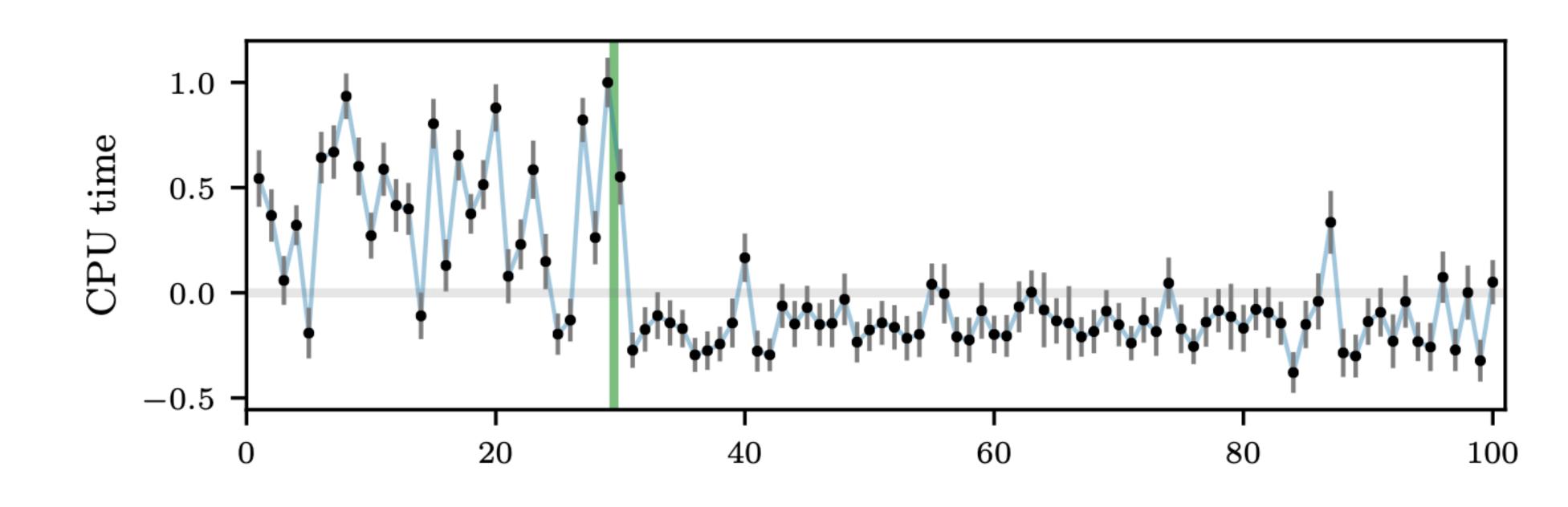
- **Constrained Bayesian Optimization with Noisy Experiments** https://arxiv.org/pdf/1706.07094.pdf
- Production/Meta
- Proprietary metric
- 6 parameters
- 31 arms in first pass
- 3 arms in second pass

Objective metric



Case: HipHop Virtual Machine

- **Constrained Bayesian Optimization with Noisy Experiments** https://arxiv.org/pdf/1706.07094.pdf
- Offline runs of PHP/Hack software
- CPU time
- 7 parameters
- 1 arm/batch
- 100 batches



Case: GPU Kernels

Bayesian Optimization for auto-tuning GPU kernels https://arxiv.org/pdf/2111.14991.pdf

Kernel	Configurations	Invalid	Minim
GEMM	17956	0 (0%)	28.307
Convolution	9400	3624 (38.5%)	1.625
PnPoly	8184	323 (3.9%)	26.968
	T. Specifica		1 1

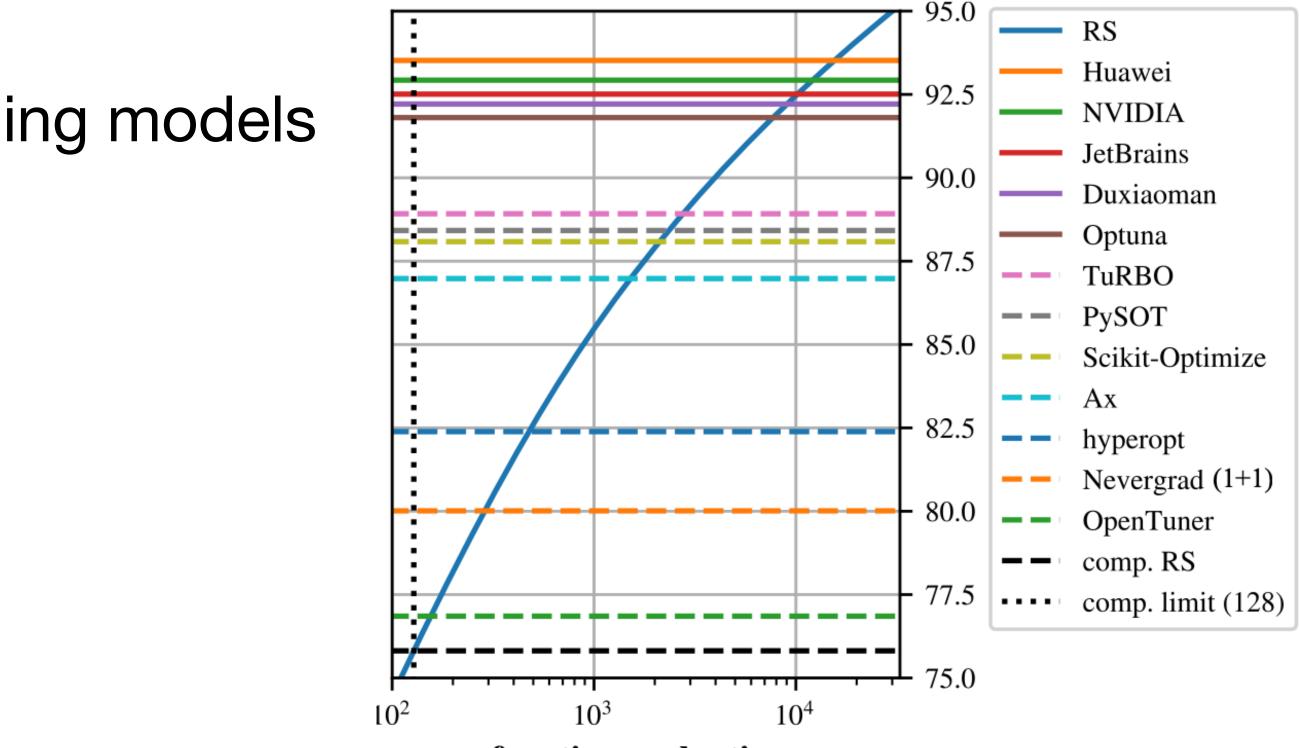
TABLE II: Specifications of tunable kernels for the GTX TitanX. Minimum execution time is given in milliseconds.

num Tunable parameters

- $M_{wg}, N_{wg}, K_{wg}, M_{dimC}, N_{dimC}, M_{dimC}, M_{dimA}, N_{dimB}, K_{WI}, V_{WM}, V_{WN}, S_{TRM}, S_{TRN}, S_A, S_B, PRECISION$
 - filter_width, filter_height, block_size_x, block_size_y, tile_size_x, tile_size_y, use_padding, read_only
- block_size_x, tile_size, between_method, use_precomputed_slopes, use_method

Case: Hyperparameter Optimization

- **Bayesian Optimization is Superior to Random Search for Machine** Learning Hyperparameter Tuning: Analysis of ... https://arxiv.org/pdf/2104.10201.pdf
- Fitting / training of supervised learning models
 - GBDT, logistic regression, MLP
- Out-of-sample loss
- 8 arms/batch
- 16 batches



function evaluations

Reading

- An Intuitive Tutorial to Gaussian Processes Regression https://arxiv.org/pdf/2009.10862.pdf
- 10 Things to Know About Covariate Adjustment https://egap.org/resource/10-things-to-know-about-covariate-adjustment/
- Chapter 5 from Experimentation for Engineers

Summary

- **Initialization**: Space-filling sequence, Sobol
- Surrogate: GPR
 - Non-parametric
 - Models mean and uncertainty
- Acquisition function: Determines next experiment design
 - Balances exploration (μ) with exploitation (σ) \bullet